
Selecting Theories and Nonce Generation for Recursive Protocols

Selecting Theories and Nonce Generation
for Recursive Protocols

Klaas Ole Kürtz, Ralf Küsters, Thomas Wilke

Klaas Ole Kürtz and Thomas Wilke Ralf Küsters

Christian-Albrechts-Universität ETH Zürich

Kiel, Germany Zurich, Switzerland

FMSE 2007, Fairfax Virginia (USA), November 2nd, 2007

1 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie 

I want to 
talk to Bob. 

OK, I want to 
talk to Charlie. 

The Recursive Authentication Protocol (Bull, Otway, Paulson,

1997) allows a chain of connections.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie 

Length of this chain is not 
bounded by the protocol. 

I want to 
talk to Bob. 

OK, I want to 
talk to Charlie. 

... 

... 

The length of the chain, i. e., the number of principals, is not

bounded by the protocol.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

I want to 
talk to Bob. 

OK, I want to 
talk to Charlie. 

I will generate keys 
for each connection. 

OK 

Length of this chain is not 
bounded by the protocol. 

Each principal P shares a symmetric key KP with a server that

will generate session keys KAB and KBC .
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

I want to 
talk to Bob. 

OK, I want to 
talk to Charlie. 

I will generate keys 
for each connection. 

OK 

Server has to recursively 
process the chained request. 

Server has to generate an 
arbitrary number of keys. 

Length of this chain is not 
bounded by the protocol. 

The depth of the request message and thus the number of keys

that have to be generated by the server are also not bounded by

the protocol.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Outline

1 The Problem

2 Our Protocol Model

3 (Un)Decidability Results

4 The Technical Heart

5 Conclusion and Outlook
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Introduction: Analysis of Cryptographic Protocols

Overview of the Topic

Security Analysis of 
Cryptographic Protocols 

The security of protocols has been studied for a long time in a

variety of di�erent ways.
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Introduction: Analysis of Cryptographic Protocols

Overview of the Topic

Security Analysis of 
Cryptographic Protocols 

Computational 
Approach 

Symbolic Approach 
(Dolev, Yao) 

In the Dolev-Yao model, messages are terms over a formal term

algebra, the intruder controls the network and can manipulate

messages, but is not able to break encryption or hashing algorithms.
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Introduction: Analysis of Cryptographic Protocols

Overview of the Topic

Security Analysis of 
Cryptographic Protocols 

Computational 
Approach 

Symbolic Approach 
(Dolev, Yao) 

Non-Recursive Protocols 
(Rusinowitch, Turuani, …) 

Recursive Protocols 

Most results cover non-recursive protocols (and frankly, most

protocols are non-recursive). We focus on recursive protocols,

e. g., the Recursive Authentication Protocol.
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Introduction: Analysis of Cryptographic Protocols

Overview of the Topic

Security Analysis of 
Cryptographic Protocols 

Tree Transducers 
(Küsters, Wilke) 

Selecting Theories 
(Truderung) 

Computational 
Approach 

Symbolic Approach 
(Dolev, Yao) 

Non-Recursive Protocols 
(Rusinowitch, Turuani, …) 

Recursive Protocols 

We extend Truderung's model of Selecting Theories which allows

automatically deciding security.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

OK, I want to 
talk to Charlie. 

I will generate keys 
for each connection. 

I want to 
talk to Bob. 

OK 

1. A  B: m1 = hashKA(A, B, NA, □) 

Alice sends Bob the initial request for the Recursive Authentication

Protocol.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

OK, I want to 
talk to Charlie. 

I will generate keys 
for each connection. 

OK 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 

Bob includes Alice's message in his own request.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

I will generate keys 
for each connection. 

OK 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 
3. C  S: m3 = hashKC(C, S, NC, m2) 

Charlie sends the nested requests to the server.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

I will generate keys 
for each connection. 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 
3. C  S: m3 = hashKC(C, S, NC, m2) 
4. S  C:  m4, m5, m6 
 with m4 =  {KAB, A, B, NA}KA 
  m5 = {KAB, A, B, NB}KB, {KBC, B, C, NB}KB 
  m6 = {KBC, B, C, NC}KC, {KCS, C, S, NC}KC
 

The server generates the session keys KAB and KBC (as well as

KCS) and sends the three certi�cates to Charlie.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 
3. C  S: m3 = hashKC(C, S, NC, m2) 
4. S  C:  m4, m5, m6 
 with m4 =  {KAB, A, B, NA}KA 
  m5 = {KAB, A, B, NB}KB, {KBC, B, C, NB}KB 
  m6 = {KBC, B, C, NC}KC, {KCS, C, S, NC}KC

5. C  B:  m4, m5

 

Charlie forwards Bob's and Alice's certi�cates to Bob.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 
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  m6 = {KBC, B, C, NC}KC, {KCS, C, S, NC}KC

5. C  B:  m4, m5

6. B  A:  m4 

Bob forwards Alices's certi�cate to her.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 
3. C  S: m3 = hashKC(C, S, NC, m2) 
4. S  C:  m4, m5, m6 
 with m4 =  {KAB, A, B, NA}KA 
  m5 = {KAB, A, B, NB}KB, {KBC, B, C, NB}KB 
  m6 = {KBC, B, C, NC}KC, {KCS, C, S, NC}KC

5. C  B:  m4, m5

6. B  A:  m4 

The server has to generate session keys, but the protocol de�nes no

restriction on the number of nested requests, i. e., the server may

have to generate an arbitrary number of keys.
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Introduction: Analysis of Cryptographic Protocols

Example Protocol: The Recursive Authentication Protocol

Alice Bob Charlie Server Oscar 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 
3. C  S: m3 = hashKC(C, S, NC, m2) 
4. S  C:  m4, m5, m6 
 with m4 =  {KAB, A, B, NA}KA 
  m5 = {KAB, A, B, NB}KB, {KBC, B, C, NB}KB 
  m6 = {KBC, B, C, NC}KC, {KCS, C, S, NC}KC

5. C  B:  m4, m5

6. B  A:  m4 

I have control over the 
network and will try to 

attack the protocol. 

A Dolev-Yao style intruder can control all the messages in the

network and may try to exploit a �aw in the protocol design.
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The Protocol Model

Basic Model (Tomasz Truderung)

The Protocol Model: Basic Model (Tomasz Truderung)

A principal consists of a sequence of receive-send actions and

some rules for recursive computation.

Receive-Send Actions

modeled by

rewrite rules

t → r(s)

with terms t and s and

a predicate symbol r

Recursive Computations

modeled by a �selecting theory�

containing clauses of the form

push clauses r(t) → r′(x)
send clauses r(t) → I(s)

with terms t and s and a variable x

Push clauses model recursive computations; Send clauses send

terms to the network, adding them to the intruder's knowledge.
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The Protocol Model

Basic Model (Tomasz Truderung)

push clause 
r(t)  r'(x) 

x 

t 

For a push clause r(t) → r′(x), consider a term t and a variable x
occurring in t.
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The Protocol Model

Basic Model (Tomasz Truderung)

r' 

r 

push clause 
r(t)  r'(x) 

t 

x 

Let t be annotated with the predicate symbol r, our push clause

will then annotate x with the predicate symbol r′.
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The Protocol Model

Basic Model (Tomasz Truderung)

r' 

r 

push clause 
r(t)  r'(x) 

send clause 
r(t)  I(s) 

t t 

x 

For a send clause r(t) → I(s), take a term t.
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The Protocol Model

Basic Model (Tomasz Truderung)

r' 

r 

push clause 
r(t)  r'(x) 

send clause 
r(t)  I(s) 

t t s 

x 

Then s can be any term with Var(s) ⊆ Var(t).
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The Protocol Model

Basic Model (Tomasz Truderung)

r' 

r 

push clause 
r(t)  r'(x) 

t 

r I 

send clause 
r(t)  I(s) 

t s 

x 

Let t be annotated with the predicate symbol r, our clause will

then annotate s with the predicate symbol I, sending the term s to

the network, i. e., adding the term to the intruder's knowledge.
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The Protocol Model

Extension for Nonce Generation

Our Model: Extension for Nonce Generation

To model nonces and key generation, . . .

1 . . . we extend the �nite signature by an in�nite set of constants

called anonymous constants, and

2 . . . we extend the clauses by register sequences κ,
i. e., a memory for a �xed number of anonymous constants.

The extended clauses are basically of the form

push clauses r(t, κ) → r′(x, κ′),
send clauses r(t, κ) → I(s).
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The Protocol Model

Extension for Nonce Generation

r' 

r κ: c1, ..., cZ

push clause 
r(t, κ)  r'(x, κ') 

t 

x 

r I 

send clause 
r(t, κ)  I(s) 

t s 

The push clause is now extended and contains κ and κ′. At t, the
predicate symbol r has a register sequence κ.
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The Protocol Model

Extension for Nonce Generation

r' 

r κ: c1, ..., cZ

κ': c1', ..., cZ'
push clause 

r(t, κ)  r'(x, κ') 

t 

x 

r I 

send clause 
r(t, κ)  I(s) 

t s 

The register sequence κ is transformed to κ′ according to the

clause.
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The Protocol Model

Extension for Nonce Generation

r κ: c1, ..., cZ I 

send clause 
r(t, κ)  I(s) 

t s 

r' 

r κ: c1, ..., cZ

κ': c1', ..., cZ'
push clause 

r(t, κ)  r'(x, κ') 

t 

x 

The send clause is now extended and contains κ. At t, the
predicate symbol r has a register sequence κ. The term s can also

contain variables from κ.
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The Protocol Model

Extension for Nonce Generation

r' 

r κ: c1, ..., cZ

κ': c1', ..., cZ'

r κ: c1, ..., cZ I 

push clause 
r(t, κ)  r'(x, κ') 

send clause 
r(t, κ)  I(s) 

t t s 

x 

Push clauses model recursive computations.

Send clauses send terms to the network, adding them to the

intruder's knowledge.
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The Protocol Model

Modeling the Example Protocol

Modeling the Example Protocol

Alice Bob Charlie Server 

1. A  B: m1 = hashKA(A, B, NA, □) 
2. B  C: m2 = hashKB(B, C, NB, m1) 
3. C  S: m3 = hashKC(C, S, NC, m2) 
4. S  C:  m4, m5, m6 
 with m4 =  {KAB, A, B, NA}KA 
  m5 = {KAB, A, B, NB}KB, {KBC, B, C, NB}KB 
  m6 = {KBC, B, C, NC}KC, {KCS, C, S, NC}KC

5. C  B:  m4, m5

6. B  A:  m4 

Upon receiving the term t, the server . . .

1 . . . applies a rewrite rule x → r(x, κ) where κ is a register

sequence with fresh anonymous constants,

2 . . . processes the term r(t, κ) using the following selecting

theory:

r(hashKn(Pn, Pm2 , x1, x2), 〈y1, y2〉) → r(x2, 〈y2, y
?〉),

r(hashKn(Pn, Pm2 , x1, hashKm1
(Pm1 , Pn, x2, x3)), 〈y1, y2〉)

→ I({y2, Pm1 , Pn, x1}Kn), I({y1, Pn, Pm2 , x2}Kn),

r(hashKn(Pn, Pm, x1,�), 〈y1, y2〉) → I({y1, Pn, Pm, x1}Kn).

where n, m1, and m2 range over the set of principals.

10 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

The Protocol Model

Modeling the Example Protocol

Modeling the Example Protocol
Upon receiving the term t, the server . . .

1 . . . applies a rewrite rule x → r(x, κ) where κ is a register

sequence with fresh anonymous constants,

2 . . . processes the term r(t, κ) using the following selecting

theory:

r(hashKn(Pn, Pm2 , x1, x2), 〈y1, y2〉) → r(x2, 〈y2, y
?〉),

r(hashKn(Pn, Pm2 , x1, hashKm1
(Pm1 , Pn, x2, x3)), 〈y1, y2〉)

→ I({y2, Pm1 , Pn, x1}Kn), I({y1, Pn, Pm2 , x2}Kn),

r(hashKn(Pn, Pm, x1,�), 〈y1, y2〉) → I({y1, Pn, Pm, x1}Kn).

where n, m1, and m2 range over the set of principals.

10 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

The Protocol Model

Modeling the Example Protocol

Modeling the Example Protocol
Upon receiving the term t, the server . . .

1 . . . applies a rewrite rule x → r(x, κ) where κ is a register

sequence with fresh anonymous constants,

2 . . . processes the term r(t, κ) using the following selecting

theory:

r(hashKn(Pn, Pm2 , x1, x2), 〈y1, y2〉) → r(x2, 〈y2, y
?〉),

r(hashKn(Pn, Pm2 , x1, hashKm1
(Pm1 , Pn, x2, x3)), 〈y1, y2〉)

→ I({y2, Pm1 , Pn, x1}Kn), I({y1, Pn, Pm2 , x2}Kn),

r(hashKn(Pn, Pm, x1,�), 〈y1, y2〉) → I({y1, Pn, Pm, x1}Kn).

where n, m1, and m2 range over the set of principals.

10 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

The Protocol Model

Modeling the Example Protocol

Modeling the Example Protocol
Upon receiving the term t, the server . . .

1 . . . applies a rewrite rule x → r(x, κ) where κ is a register

sequence with fresh anonymous constants,

2 . . . processes the term r(t, κ) using the following selecting

theory:

r(hashKn(Pn, Pm2 , x1, x2), 〈y1, y2〉) → r(x2, 〈y2, y
?〉),

r(hashKn(Pn, Pm2 , x1, hashKm1
(Pm1 , Pn, x2, x3)), 〈y1, y2〉)

→ I({y2, Pm1 , Pn, x1}Kn), I({y1, Pn, Pm2 , x2}Kn),

r(hashKn(Pn, Pm, x1,�), 〈y1, y2〉) → I({y1, Pn, Pm, x1}Kn).

where n, m1, and m2 range over the set of principals.

10 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

The Protocol Model

Modeling the Example Protocol

Modeling the Example Protocol
Upon receiving the term t, the server . . .

1 . . . applies a rewrite rule x → r(x, κ) where κ is a register

sequence with fresh anonymous constants,

2 . . . processes the term r(t, κ) using the following selecting

theory:

r(hashKn(Pn, Pm2 , x1, x2), 〈y1, y2〉) → r(x2, 〈y2, y
?〉),

r(hashKn(Pn, Pm2 , x1, hashKm1
(Pm1 , Pn, x2, x3)), 〈y1, y2〉)

→ I({y2, Pm1 , Pn, x1}Kn), I({y1, Pn, Pm2 , x2}Kn),

r(hashKn(Pn, Pm, x1,�), 〈y1, y2〉) → I({y1, Pn, Pm, x1}Kn).

where n, m1, and m2 range over the set of principals.

10 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

The Protocol Model

Modeling the Example Protocol

Modeling the Example Protocol
Upon receiving the term t, the server . . .

1 . . . applies a rewrite rule x → r(x, κ) where κ is a register

sequence with fresh anonymous constants,

2 . . . processes the term r(t, κ) using the following selecting

theory:

r(hashKn(Pn, Pm2 , x1, x2), 〈y1, y2〉) → r(x2, 〈y2, y
?〉),

r(hashKn(Pn, Pm2 , x1, hashKm1
(Pm1 , Pn, x2, x3)), 〈y1, y2〉)

→ I({y2, Pm1 , Pn, x1}Kn), I({y1, Pn, Pm2 , x2}Kn),

r(hashKn(Pn, Pm, x1,�), 〈y1, y2〉) → I({y1, Pn, Pm, x1}Kn).

where n, m1, and m2 range over the set of principals.

10 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

The Protocol Model

Modeling the Example Protocol

Modeling the Example Protocol
Upon receiving the term t, the server . . .

1 . . . applies a rewrite rule x → r(x, κ) where κ is a register

sequence with fresh anonymous constants,

2 . . . processes the term r(t, κ) using the following selecting

theory:

r(hashKn(Pn, Pm2 , x1, x2), 〈y1, y2〉) → r(x2, 〈y2, y
?〉),

r(hashKn(Pn, Pm2 , x1, hashKm1
(Pm1 , Pn, x2, x3)), 〈y1, y2〉)

→ I({y2, Pm1 , Pn, x1}Kn), I({y1, Pn, Pm2 , x2}Kn),

r(hashKn(Pn, Pm, x1,�), 〈y1, y2〉) → I({y1, Pn, Pm, x1}Kn).

where n, m1, and m2 range over the set of principals.
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Main Results

The Secrecy Problem

Is there a run of a given protocol such that the intruder is able to

access the secret, i. e., the special constant �$�?

Decidability Result

The secrecy problem for protocols using anonymous constants is

decidable in nondeterministic double exponential time.

Undecidability Result

The secrecy problem is undecidable for protocols without

anonymous constants, but with non-�at terms on the left-hand

side of push clauses.
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The DAG of an Attack (ADAG)

The technical heart of the paper is . . .

1 . . . the notion of a DAG of an Attack (ADAG), a graph

structure that encodes an attack on a recursive protocol,

i. e., is an encoding of one concrete run of the protocol, and

2 . . . the method to scale down the ADAGs to a limited size,

allowing us to nondeterministically decide the security problem.

An ADAG is a complex combinatorial structure, its de�nition is

lengthy and hideous.
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 Term-DAG  D 

Start with a Term DAG D (actual function symbols and constants

of the terms are omitted) containing all terms occurring in the run

of a protocol.
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t1 k5 

t4 

s4 

s3 

¢ 

k2 t3 

$ 

 Term-DAG  D 

Terms TP 

Take the set of terms TP containing t, s of the receive-send steps,

the keys k and the constants for the intruder's initial knowledge

and the secret $.
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t1 k5 

t4 

s4 

s3 

¢ 

k2 t3 

$ 

 Term-DAG  D α Embedding 

Terms TP 

Embed the terms of TP in the Term DAG, i. e., each term is

represented by a �xed node and its descendants.
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t1 k5 

t4 

s4 

s3 

¢ 

k2 t3 

$ 

I(3,2) 
q1 

I(2,0) 
q3 

rI(1,2) 

q4 ... ... 

... ... ... ... ... r2(3,0) 

... ... ... ... ... ... ... ... .. ... 

... ... ... ... 

... 

... 

δ Predicate Symbols Attribution  

 Term-DAG  D α Embedding 

Terms TP 

Label the nodes with the predicate symbols occurring in the run of

the protocol, i. e., if the Horn fact I(3,2)(k5) occurs in the run, label

the node corresponding to k5 with I(3,2).
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... ... ... ... ... ... ... ... .. ... 

... ... ... ... 

... 

... 

Ψ 

…  … 
…  … 
…  … 
Protocol 

Description δ Predicate Symbols Attribution  

 Term-DAG  D α Embedding 

Terms TP 

Take the protocol description, i. e., a special merge of the protocol's

selecting theory and the intruder's theory.

13 / 16



Selecting Theories and Nonce Generation for Recursive Protocols

Main Results

The DAG of an Attack (ADAG)

t1 k5 
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rI(1,2) 

q4 ... ... 

... ... ... ... ... r2(3,0) 

... ... ... ... ... ... ... ... .. ... 

... ... ... ... 

... 

... 

Ψ 

…  … 
…  … 
…  … 
Protocol 

Description δ Predicate Symbols Attribution  

 Term-DAG  D α Embedding 

Witness β Terms TP 

For each predicate symbol r, a function β witnesses the

corresponding clause and the prerequisites for applying that clause,

i. e., a node, a predicate symbol, and a register sequence?
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... 

... 

Ψ 

…  … 
…  … 
…  … 
Protocol 

Description δ Predicate Symbols Attribution  

 Term-DAG  D α Embedding 

Witness β 

Anonymous 
Constants   

c1 c2 

c3 
c4 

c5 

Γ 

 

Terms TP 

Take the set of anonymous constants. For each concrete run, we

only need a �nite subset Γ̂ of Γ.
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... 
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Ψ 

…  … 
…  … 
…  … 
Protocol 

Description δ Predicate Symbols Attribution  

 Term-DAG  D α Embedding 

Witness β 

c9, c3, ..., c12
c8, c3, ..., c19
c3, c21, ..., c3 

Registers γ 

Terms TP 

Anonymous 
Constants   

c1 c2 

c3 
c4 

c5 

Γ 

 

Each predicate symbol at each node can have multiple register

sequences containing a �xed number of anonymous constants.
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... 

... 

Ψ 

…  … 
…  … 
…  … 
Protocol 

Description δ Predicate Symbols Attribution  

 Term-DAG  D α Embedding 

Witness β 

λ Freshness 

c9, c3, ..., c12
c8, c3, ..., c19
c3, c21, ..., c3 

Registers γ 

Anonymous 
Constants   

c1 c2 

c3 
c4 

c5 

Γ 

 

Terms TP 

The freshness of anonymous constants is guaranteed by a function

which maps each constant to the location where it is generated.
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c8, c3, ..., c19
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c3 
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Terms TP 

This is the basic structure of an ADAG D = (D,Ψ, Γ̂, α, β, γ, δ, λ),
which is accompanied by a set of conditions.
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Conclusion

We have extended Truderung's model to model nonce and

key generation.

This was done by adding a in�nite set of constants to the

�nite signature and by extending the clauses of the selecting

theory with a memory for a �xed number of constants.

In this setting secrecy is decidable as long as we do not allow

non-linear terms in the push clauses.

The exact modeling of hash values in our paper leads to a

technical problem we just discovered, which we cannot resolve

yet. This doesn't invalidate the example as we can express it

in a slightly modi�ed protocol model.
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Related and Future Work

The selecting theory model has, e. g., been extended by

Küsters and Truderung to allow the modeling of the XOR

operator.

Future work could include:

Extend the model with Di�e-Hellman Exponentiation.

Although the model itself and the usage of selecting theories

seems to be elegant, the proof is heavy of technical details and

can hopefully be improved.

As shown by the undecidability result, there is a trade-of

between features of the model and decidability than can be

explored further.
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Thank you for your attention!

Questions?
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