
Informatik 3

Mitschrift von www.kuertz.name

Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften
sind teweilse unvollständig, falsch oder inaktuell, da sie aus dem Zeitraum 2001–
2005 stammen. Falls jemand einen Fehler entdeckt, so freue ich mich dennoch über
einen kurzen Hinweis per E-Mail – vielen Dank!

Klaas Ole Kürtz (klaasole@kuertz.net)

http://www.kuertz.name
mailto:Klaas Ole Kuertz <klaasole@kuertz.net>

Inhaltsverzeichnis
0 Introduction: Tanenbaum’s „Modern Operating Systems

“ 2
0.1 Two views of an Operating System 2
0.2 History of Operating Systems 4
0.3 Peterson’s Mutual Exclusion Algorithm 7

1 The Xinu-Approach 8
1.1 Operating Systems . 8
1.2 Our Approach . 8
1.3 What an Operating System is not 8
1.4 An Operating System viewed from the Outside 8

1.4.1 The Xinu Small Machine Environment 8
1.4.2 Xinu Services . 9
1.4.3 Concurrent Processing 9
1.4.4 The Distinction between Programs and Processes . . . 9
1.4.5 Process Exit . 10
1.4.6 Shared Memory . 10
1.4.7 Synchronization . 10
1.4.8 Mutual Exclusion . 10

1.5 An Operating System viewed from the Inside 10
1.6 Summary . 11

2 Overview of the Machine and its Run-Time Environment 11
2.1 The Machine . 11

2.1.1 Physical Organization of the LSI 11/2 11
2.1.2 Logical Organization of the LSI 11/2 12
2.1.3 Registers in the LSI 11/2 12
2.1.4 Address space . 12
2.1.5 Processor Status Word 13
2.1.6 Vectored Interrupts . 13
2.1.7 Exceptional Conditions 14
2.1.8 Asynchronous Communication 14
2.1.9 LSI 11 Asynchronous Serial Line Hardware 14
2.1.10 Addressing a Serial Line Unit 14
2.1.11 Polled vs. Interrupt-Driven I/O 14

2.2 Disk Storage Organization . 14
2.3 The C-Run-Time Environment 14

2.3.1 Conventions for translating procedures in the C-Compiler 15
2.4 Summary . 17

i

3 List and Queue Manipulation 17
3.1 Linked Lists Of Processes . 17
3.2 Implementation of the Q-Structure 18

3.2.1 In-Line Q Functions 18
3.2.2 FIFO Queue Manipulation 18

3.3 Priority Queue Manipulation 18
3.4 List Initialization . 18
3.5 Summary . 18

4 Scheduling and Context Switching 19
4.1 The Process Table . 19
4.2 Process States . 19
4.3 Selecting a Ready Process . 19
4.4 The Null Process . 21
4.5 Making a Process Ready . 22
4.6 Summary . 22

5 More Process Management 22
5.1 Process Suspension and Resumption 22

5.1.1 Implementation of Resume 22
5.1.2 The Return Values SYSERR and OK 23

5.2 System Calls . 23
5.2.1 Implementation of Suspend 24
5.2.2 Suspending the current Process 24

5.3 Process Termination . 24
5.4 Kernel Declarations . 25
5.5 Process Creation . 25

6 Process Coordination 25
6.1 Low-Level Coordination Techniques 26
6.2 Implementation of High-Level Coordination Primitives 26
6.3 Semaphore Creation and Deletion 26

7 Message Passing 26

8 Memory Management 27

9 Interrupt Processing 27
9.1 Dispatching Interrupts . 27
9.2 Input and Output Interrupt Dispatchers 27
9.3 The Rules for Interrupt Processing 28

ii

10 Real-Time Clock Management 29
10.1 The Real-Time Clock Mechanism 29
10.2 Optimization of Clock Interrupt Processing 29
10.3 The use of the real-time clock 29
10.4 Delta List Processing . 30
10.5 Putting a Process to Sleep . 30
10.6 Delays measured in Seconds 30
10.7 Awaking Sleeping Processes 30
10.8 Deferred Clock Processing . 31

10.8.1 Procedures for Changing to and from Deferred Mode . 31
10.9 Clock Interrupt Processing . 31
10.10Clock Initialization . 31
10.11Summary . 31

11 Device independent Input and Output 31
11.1 Properties of the input and output interface 32
11.2 abstract Operations . 32
11.3 Binding abstract Operations to Real Devices 33
11.4 Binding I/O calls to Device Drivers at Run-Time 33
11.5 Implementation of high-level I/O-operations 34
11.6 Opening and Closing Devices 34
11.7 Null and Error Entries in Device Table 34
11.8 Initialization of the I/O System 34
11.9 Interrupt vector Initialization 35

12 An Example Device Driver 35
12.1 The device type tty . 35
12.2 Upper and Lower Halves of the Device Driver 35
12.3 Synchronization of the Upper and Lower Halves 36
12.4 Control Block and Buffer Declarations 36
12.5 Upper-Half tty Input Routines 36
12.6 Upper-Half tty Output Routines 36
12.7 Lower-Half tty Driver Routines 36

12.7.1 Watermarks and Delayed Signals 36
12.7.2 Lower-Half Input Processing 36
12.7.3 cooked Mode and cbreak-Mode Processing 37

12.8 tty Control Block Initialization 37
12.9 Device Driver Control . 37
12.10Summary . 37

iii

13 System Initialization 37
13.1 Starting from Scratch . 37
13.2 Booting Xinu . 38
13.3 System Startup . 39
13.4 Finding the size of Memory 39
13.5 Initializing System Data Structures 39
13.6 Transforming the Program into a Process 39
13.7 The Map of Low Core . 39
13.8 Summary . 39

17 A Disk Driver 39
17.14Summary . 40
17.1 Operations supplied by the Disk Driver 40
17.2 Controller Request and Interface Register Descriptors 41
17.3 The List of pending Disk Requests 41
17.4 Enqueuing Disk Requests . 42
17.5 Optimizing the Request Queue 42
17.6 Starting a Disk Operation . 42
17.7 The upper-half read Routine 42
17.8 Driver Initialization . 42
17.9 The upper-half output Routine 43
17.10The upper-half output Routine 43
17.11The upper-half seek Routine 43
17.12The lower-half of the Disk Driver 43
17.13Flushing Pending Requests . 43

iv

Organisatorisches
• In der zweiten Woche nach Semesterende wird ein fakultatives „Hands-

on“-Praktikum (eine Woche) angeboten.

• relevant für die Note:

– Mittsemester-Test am Dienstag, den 03.12.2002 (ca. 30%)

– Endsemester-Test am Samstag, den 08.02.2003 (ca. 40%)

– Hausaufgaben (ca. 30%)

• Literatur, die als Kopie ausgeteilt wird:

– Kapitel 1 bis 2 aus: Andrew S. Tanenbaum: Modern Opera-
ting Systems

– Kapitel 1 bis 13, 17 bis 18 aus: Douglas Comer: Operating
System Design - The Xinu Approach

– Abschnitt „Operating Systems“ aus der C.S.Encyclopedia

Dafür bitte 5 e mitbringen.

• Literaturempfehlung: William Stallings: „Operating Systems“ (4th Editi-
on) oder auf deutsch „Betriebssysteme“ (4. Auflage, ISBN 3-8273-7030-2)
- siehe www.pearson-studium.de

• Accounts: Von der Rechnerbetriebsgruppe kann sich jeder einen indivi-
duellen dauerhaften Account bereitstellen lassen:

1. Formular online ausfüllen: www.informatik.uni-kiel.de⇒ Rech-
nerbetriebsgruppe ⇒ Anmeldung

2. Paßwort abholen bei Frau Dort, Verwaltungshochhaus Zimmer 807

1

0 Introduction: Tanenbaum’s „Modern Ope-
rating Systems “

0.1 Two views of an Operating System
• Without software a computer is a useless lump of metal. Computer-

software is divided into:

1. Systems Programs, managing the operation of the computer
itself

2. Application Programs, solving the problems of its users

• Most fundamental system program: Operating Systems

– controlling a computer’s resources

– providing the basis upon which application programs can be written

• Modern computer systems consist of ≥ 1 processors, memories, clocks,
I/O devices, terminals, disks, network interfaces - writing programs
coordinating these resources is extremely difficult! Even restricting
oneself to all details involving disk drives is almost impossible: If every
programmer had to write these, writing application programs would be
impossible. Solution: write layers on top of hardware shielding users
from that complexity.

• „The most basic commands are READ and WRITE, each of which requires
13 parameters, packed into 9 bytes. These parameters specify such items
as the address of the disk block to be read, the number of sectors per
track, the recording mode used on the physical medium, the intersector
gap spacing, and what to do with a deleted-data-address-mark. If you
do not understand this mumbo jumbo, do not worry, that is precisely
the point - it is rather esoteric. When the operation is completed, the
controller chip returns 23 status and error fields packed into 7 bytes.
As if this were not enough, the floppy disk programmer must also be
constantly aware of whether the motor is on or off. If the motor is off,
it must be turned on (with a long start-up delay) before data can be
read or written. The motor cannot be left on too long, however, or the
floppy disk will wear out. The programmer is thus forced to deal with
the trade-off between long start-up delays versus wearing out floppy
disks (and losing data on them).“ (from „modern operating systems“ by
Andrew S. Tanenbaum, 1.1.1)

2

• A computer system consists of hardware, system programs and applica-
tion programs:

Banking system Airline reservation Adventure games } Application programs
Compilers Editors Command interpreter } System programs

Operating system
Machine language
Microprogramming
Physical devices

• Devices: chips, wires, clocks, power supply; programming: micropro-
grams control these devices (in read-only memory, basically interprets
executing instructions as ADD, MOVE, JUMP, ...). In this language I/O-
devices are controlled by loading values into device registers (i.e. for disk:
disk address, memory address, byte count, read/write). The Operating
System hides all this complexity: „write block X to file Y“.

• Operating System runs in kernel or supervisor mode: protected from
user tampering by hardware, compilers and editors run in user mode -
which user is free to change1.

• There exist two views of an operating system2:

1. Bottom Up: As a Resource Manager: This view holds that the
primary task of an Operating System is to keep track of who is
using which resource, to grant resource requests, to mediate con-
flicting requests between different users.

This view provides a bottom-up view: The Function of an Ope-
rating System is to manage all resources. Multiple usage/users
competing for multiple resources ⇒ need for management & pro-
tection (memory, I/O devices, ...)

This need arises because users must share these resources, and
because users want to share information. So, in this view, the
Operating System ...

– keeps track of who uses which resource
– it grants resource requests
– it accounts for usage (time used ...)
– mediates in conflicting requests

1„Und für das Script brauche ich fünf Öro!“
2„Wenn man kein C kennt: Kein Problem, ich kann’s auch nicht!“

3

2. Top Down: As providing a simple high-level abstraction that
hides the truth about horrible hardware from the programmer by
providing a simple interface for a virtual machine (= the real
machine and its system programs)

0.2 History of Operating Systems
The history of Operating Systems is intimately linked with the history of
computers.

0. Charles Babbage’s (1792 - 1871) Analytical Engine (only in
theory)

1. 1945 - 1955: based on Vaccum Tubes & Plugboards3

• No separation between builders and users because vacuum tubes
broke down too often (approx. 20.000 of them were used) and
programming was only possible by wiring plugs up to control
machine’s basic functions

• The first BUG was found by Grace Murray Hopper on the
Mark II computer4, is now in the National Museum of American
History at the Smithonian Institute.

• In the early 1950’s punched cards were used instead of wired-up
plugboards.

2. 1955 - 1965: based on Transistors & Batch Systems

• gain in reliability, possibility to sell computers (split between
builders/designers an users/maintenance personnel)

• introduction of high-level machine languages (Cobol, Fortran,
Algol, Lisp)

• mode of operation5

• there was a split between:

– word-oriented large scale scientific computers for numerical
calculations

3see Tanenbaum 1.2.1
4legt Folie vom Logbuch des Mark II mit dem eingeklebten ersten Bug (einer Motte)

auf: „Das wird Euer Leben sein! (...) Das ist Sauron! Sauron kann nicht bekämpft werden,
Sauron steht immer wieder auf!“

5see Tanenbaum page 7

4

– character-oriented commercial computers for tape sorting and
printing

3. 1965 - 1980: that of Integrated Circuits, based on IC & Multipro-
gramming:

• request for single family satisfying needs of all customers: IBM 360
concept: in principle, same program could be run on all computers
of the 360 line

• range: from less powerful, decently priced computers to highly
expensive ones, resulting in a much better price/performance ratio6

• difficulties with programming their Operating System led is 1967
to coining the term „software crisis“, everyone’s wave of corrections
in millions of lines of code triggered a new wave of errors ⇒
debugging difficult because of lack of structures7

• advantages8:

– multiprogramming to optimize processor usage. Why?
∗ with commercial data processing I/O wait time 80 - 90%

of total computer time, so CPU idled to much
∗ memory partitioned with different job in each partition,

special protection needed for each job to prevent mischief
by other processes (built into 360):

operating system
user

program
area

operating system
job 1
job 2
job 3

simple batch multi-programming-
system system

– spooling: enables Operating System to load a new job from
disk in a now-empty partition

– timesharing: multiprogramming & fast turn around time &
interaction, each user has its own on-line terminal and protec-
tion of hardware segment in memory, created the illusion that
each user had a machine all on its own (see text pg. 10); first

6„Die Idee war phantastisch, genau wie alle Lügen von Schröder in der Wahlperiode!“
7„Ingenieure sind konservativ: Eine Brücke, die heute noch steht, steht auch in ein paar

Jahren noch!“
8„puff puff puff, tschuka tschuka tschuk“

5

time-sharing system CTSS (1962) implemented on a modified
IBM 7094

• Multics (MIT, Bell Labs, General Electric): This
Multiplexed Information and Computing Service should run on one
such machine and provide computer power for everyone in Boston!
⇒ General Electrics stopped producing computers, Bell
Labs quit project

• Growth of Minicomputers: PDP1-11, VAX, based on LSI (large
scale integrated circuits) for single client use; Ken Thomspon,
who worked on the Multics-project, found a not used PDP-7
minicomputer and wrote a stripped down, single user version of
Multics: Unix!

4. 1980 - now: that of personal computers

• based on vlsi circuits: better price/performance ration

• the micro-processor-chip made it possible for a single individual
to have her/his own personal computer: laptop; most powerful
versions: workstations, linked together by a network: distributed
computing/web

• main-factor for Operating Systems: user friendliness: These
systems were intended for users, not knowing anything F
about computers, and having no intention of learning
their structure9.

• MS-DOS was dominant on Intel-processors (no protection of hard-
ware, virus sensitive) and UNIX was dominant on non-Intel-processors
for workstations (with hardware protection)

• in a Network Operating System users login on remote machines,
copy files from one machine to another; Network Operating System
consists of a single processor Operating System & network interface
control & remote login

• Distributed Operating System: composed and running on multiple
processors, but appears to users as a traditional processor; different
from single-processor-systems because of the complex scheduling
and problem of communication delays

9„Das erklärt, warum wir in InformatikI 230 Studenten und hier noch 80 Studenten
haben!“

6

0.3 Peterson’s Mutual Exclusion Algorithm
1. Listing:

P1 ≡ l0: loop forever do P2 ≡ m0: loop forever do
l1: noncritical section m1: noncritical section
l2: (y1, s) := (1, 1); m2: (y2, s) := (1, 2);
l3: wait(y2 = 0) ∨ (s 6= 1); m3: wait(y1 = 0) ∨ (s 6= 2);
l4: critical section m4: critical section
l5: y1 := 0; m5: y2 := 0;

od od

• critical section and noncritical section do not refer to yi, s

• wait b: traffic light, passable when b holds

• yi: Set to 1 by Pi to signal to Pj that Pi wants to enter critical
section, i 6= j. set to 0 by Pi to signal to Pj that Pi has exited
critical section.

• s: Serves as a logbook to resolve tie between 2 processes wishing
both to enter critical section; contains identity of the latest proces-
ses willing to enter.

• problem: (y1, s) := (1, 1) is a simultaneous assignment! !
2. Listing:

P1 ≡ l0: loop forever do P2 ≡ m0: loop forever do
l1: noncritical section m1: noncritical section
l2: s = 1; m2: s = 2;
l3: y1 = 1 m3: y2 = 1
l4: wait(y2 = 0) ∨ (s 6= 1); m4: wait(y1 = 0) ∨ (s 6= 2);
l5: critical section m5: critical section
l6: y1 := 0; m6: y2 := 0;

od od

• problem: l0, l1, l2, m0, m1, m2, m3, m4, m5, l3, l4, l5 !
3. Listing:

P1 ≡ l0: loop forever do P2 ≡ m0: loop forever do
l1: noncritical section m1: noncritical section
l2: y1 = 1 m2: y2 = 1
l3: s = 1; m3: s = 2;
l4: wait(y2 = 0) ∨ (s 6= 1); m4: wait(y1 = 0) ∨ (s 6= 2);
l5: critical section m5: critical section
l6: y1 := 0; m6: y2 := 0;

od od

• this solution works!

7

1 The Xinu-Approach

1.1 Operating Systems

1.2 Our Approach
The Xinu-approach is a practical approach, showing the details of a real
system; starting with a micro computer and proceeding step-by-step through
the construction of a layered system.

Advantages: see how an entire system fits together, no mystery about any
part of the implementation, possibility to experiment with the system.

The programs and code form an integral part of the book and the lectures,
beginning with a layering scheme and following it consistently.

1.3 What an Operating System is not

1. a language or a compiler: one needs no special language or compilers to
write Operating Systems

2. command interpreter: in modern systems the user can choose its own
command interpreter

3. library of commands: programs that edit files, send mails, compile
programs ar just utility programs

1.4 An Operating System viewed from the Outside
An Operating System provides services, programs access these services by
making system calls. These system calls establish a boundary between the
running program and the Operating System, an Operating System can even
be described by its services.

With Xinu as illustrating example we explain how to read characters from a
keyboard, display characters on a terminal, manage multiple processes and
so on.

1.4.1 The Xinu Small Machine Environment

Sometimes computers are too small to compile operating systems. How to
get an Operating System on the computer?

• minimum configuration on client

8

• entire system on a larger machine (host)

• user compiles on host with cross-compiler

• downloader copies the memory image to the client (serial connection)

• execution proceeds on the client

Otherwise, one version of the Operating System can be used to create the
next version (Bootstraping).

1.4.2 Xinu Services

1.4.3 Concurrent Processing

Concurrent processing means that many computations proceed „at the same
time“. In contrast, conventional programs are called sequential because the
programmer imagines a machine executing the code statement-by-statement.

To create the illusion of concurrent processing the Operating System switches
a single processor among multiple programs, the Operating System itself is a
good example of a concurrent program. The lowest level of Operating System
is the scheduler handling all these processes.

1.4.4 The Distinction between Programs and Processes

There a some major differences between programs and processes:

• A procedure call does not return until the called procedure completes.
Create and resume return to the caller after starting the process, allowing
execution of both the calling procedure and the named procedure to
proceed concurrently.

• A program consist of code executed by a single process. In sharp contrast,
processes are not uniquely associated with a piece of code: multiple
processes can execute the same code simultaneously.

• Storage for local variables and procedure arguments is associated with
the process executing the procedure, not with the code in which they
appear.

Just like a sequential program, each process has its own stack of procedure
calls. Whenever it executes a call, the called procedure is pushed onto the
stack; whenever it return from that procedure, it is popped of the stack.

9

1.4.5 Process Exit

The system call kill(P) terminates the process with process-ID P.

To kill a process with name process just call kill(getPID("process")) .

1.4.6 Shared Memory

1.4.7 Synchronization

Look at the consumer/producer-problem: How can the programmer synchro-
nize producer and consumer, so that the consumer receives every datum
produced? The mechanism for synchronization of producer and consumer
must be designed carefully, because:

• In a single processor system, no process should use the CPU while
waiting for another process. Xinu avoids busy waiting by supplying
coordination primitives called semaphores, and system calls wait(s)
and signal(s) operating on semaphore s

• wait(s) decrements semaphore s and causes the process to wait if the
result is negative; signal(s) increments s, allowing some waiting process
to continue

1.4.8 Mutual Exclusion

Mutual exclusion can be realized with semaphores, it is used to avoid race
conditions - for example in a print spooler. No two processes are in their
critical section at the same time, no process running outside the critical
section may block other processes.

1.5 An Operating System viewed from the Inside
The layers of Xinu:

1. Hardware

2. Memory Manager

3. Process Manager

4. Process Coordination

5. Interprocess Communication

6. Real-Time Clock Manager

10

7. Device Manger and Device Drivers

8. Intermachine Network Communication

9. File System

10. User Programs

1.6 Summary
The operating system manages to provide reasonable high-level services
with unreasonably low-level hardware, hiding the details of the low-level
machine. Since 1967 each layer of the operating system provides an abstract
service, implemented in terms of the abstract machine provided by the lower-
level layers. User access the operating system by system calls; possibility of
concurrent programming (a grand illusion!).

The Distinction between Programs and Processes10: A procedure call
does not return until the called procedure completes. Create and resume11

return to the caller after starting the process, allowing execution of both the
calling procedure and the named procedure to proceed concurrently12.

2 Overview of the Machine and its Run-Time
Environment

2.1 The Machine
The Digital Equipment Corporation LSI 11/2 16-bit-microprocessor
- a microcomputer version of the PDP11. Discussed here: describing pertinent
features of the processor, memory, and communication devices. It explains
the architecture, asynchronous communication, disk storage devices and me-
chanisms like the stack, vectored interrupts and device addressing.

2.1.1 Physical Organization of the LSI 11/2

The LSI 11/2 is constructed from printed circuit boards, slotted into the
sockets of a backplane. These sockets are wired together to form a bus (the

10Zu seiner eigenen Folie: „Ich hoffe, daß das lesbar ist - meines Erachtens ist es das
nicht!“

11„resume ist wie ein Ehepaar, es erzeugt ein Kind und setzt sein Leben fort!“
12„Frauen können hervorragend nebenläufig denken, das war früher in den Höhlen so!

Concurrent processing findet hauptsächlich statt im Kopf einer Frau!“

11

Q-bus) consisting of power lines (attached to all board in parallel) an lines
linking up the sockets for interboard communication (signals travel to the
board on one contact and away on another). One board contains the 11/2
processor itself, other boards contain memory or device interfaces and so on.

A board communicates with another board by passing signals across the bus.
E.g., when the processor board needs to write unto memory, it places address
& data (16 + 16 Bit) on the bus for the memory board to retrieve & store.

Memory is logically contiguous, each board contains switches (hardwired
jumpers) that can be changed: it is possible to configure two identical memory
boars so that one responds to low memory addresses and the other to high
addresses. The physical order of boards along the Q-bus determines their
priority (used later).

Signals enter a board on one connector and leave it on another one, so the
board can decide whether to intercept the signal or pass it on down
the bus; example: two boards waiting for service.

2.1.2 Logical Organization of the LSI 11/2

2.1.3 Registers in the LSI 11/2

Register R4 points to calling procedures frame, while R5 points to frame of
currently active called procedure.

Notation Register Use
R0 0 general purpose
R1 1 general purpose
R2 2 general purpose
R3 3 general purpose
R4 4 previous display
R5 5 current display
SP 6 stack pointer
PC 7 programm counter
PS status processor status

2.1.4 Address space

The memory is divided into 8-bit-quantities called bytes (also called character)
being the smallest addressable unit. Most instructions operate on two bytes

12

(a word), they affect addressed byte & the next higher byte. All addresses are
formulated in octal ! The LSI 11/2 hat 64K Bytes of Memory (216 bytes)13:

from to use of memory
0000000 0000777 for interrupts and exception vectors
0001000 0157777 real available memory, the stack grows

in direction from 0157777 to 01000
0160000 0177777 address space for devices

2.1.5 Processor Status Word

Processor Priority: To disable interrupts set processor/interrupt mask to
0111002 = 3408.

15 through 8 7 through 5 4 3 through 0
... Processor Priority Trace Mode Condition Codes

2.1.6 Vectored Interrupts

The LSI 11/2 uses the vectored interrupt scheme14 for handling exceptions
and interrupts from external devices. Whenever an external device must
communicate with the processor, the device places a signal on the interrupt
bus line. If the processor runs with interrupts enabled, it checks the interrupt
line after executing every instruction.

To handle an interrupt, the processor sends an acknowledgement over
the bus, requesting the interrupting device to return an interrupt vector
address (IVA). Each device is assigned a unique interrupt vector address,
enabling the system software to identify/distinguish among them. The first
device with a pending request receives the acknowledgement and responds
by returning its interrupt vector address (an interrupt vector consists of two
bytes).

When CPU receives the interrupt vector address v from the Q-bus, the
processor pushes current value of PC and PS on stack, and loads a new
PC and PS from 2 words in memory starting at location v, and continues
execution beginning at the new location addressed by PC.

The interrupt „acts“ like a procedure call, inserted (invisibly) by the hardware
in between two instructions in the user’s code. The processor executes the

13„Dort schläft schon ein Herr, laßt ihn schlafen, er hat’s verdient, er hat heute Nacht
viel Spaß gehabt - hoffen wir!“

14„Das ist nur etwas Blödes, das ist nicht schwer!“

13

code in the interrupt routine and returns to the place where the user’s
program was interrupted.

2.1.7 Exceptional Conditions

2.1.8 Asynchronous Communication

The serial line unit sends and receives characters asynchronously on three
wires (data in two directions and electrical ground). The Transmitter sends
series of pulses, 8 bit together with optional start, stop and parity bit; the
Conversion is done by Universal Asynchronous Receiver and Transmitter
(UART).

Sender and Receiver have own clocks and try to sample the series of pulses,
each bit gets sampled several times, inconsistency results in framing error
and too much characters means character overrun error. A line remaining
idle in the wrong state for an extended period gives a break (e.g. needed for
downloading operating system into memory, see (1.4.1)).

2.1.9 LSI 11 Asynchronous Serial Line Hardware

2.1.10 Addressing a Serial Line Unit

The CPU has to read and write to special addresses beyond the real
memory, e.g. 01775608, 01775628, 01775648, 01775668.

2.1.11 Polled vs. Interrupt-Driven I/O

Polling requires the CPU to check the device repeatedly until it finds that a
character is waiting. To use interrupt-driven processing instead of polling,
each subsequent character will cause an interrupt.

2.2 Disk Storage Organization
Wird erst in den letzten zwei Wochen der Vorlesung behandelt!

2.3 The C-Run-Time Environment
Operating Systems are written in high-level languages to make them easier
to write, understand, debug and move to other machines. However, someti-
mes machine assembly language procedures are introduced because machine
quantities must be directly manipulated, e.g. for saving and restoring the ma-
chine’s registers, writing context-switching code, writing interrupt-handling,

14

implement semaphores and so on. The Storage Layout for a C-Program looks
like:

0 _ etext _ edata _ end
text data bss free space ←− · · · stack

Because the whole Xinu-system is one C-program, the storage layout when
Xinu runs is modified:

0 _etext _edata _end
text data bss free space ← stack #3 ← stack #2 ← stack #1

The symbols _etext, _edata and _end refer to global variables inserted into
object program by the loader, they are initialized to the first address beyond
text, data and bss segments. Thus a running program can find out how much
memory remains between the end of the loaded part and the current top of
stack by taking the address of _end.

2.3.1 Conventions for translating procedures in the C-Compiler

proc A {
some_code_1 ;
ca l l B (arg1 , . . . , argn) ;
some_code_2 ; }

In this example15, A is the calling, B the called procedure. How is the code
of calling procedure B within the procedure body of A in C’s compiler?

1. The values of actual parameters of B (in reverse order) are pushed
on the stack.

2. The address of return address in A (i.e. of the instruction following to
the call of B, some actions in picture above) are pushed on the stack.

3. Then the flow of control branches to B.

Calling procedure (A) is also responsible for popping B’s arguments from the
stack after the called procedure (B) returns.

• code of calling procedure A:
. . . // B ’ s arguments put on stack
j s r pc , addB // pushes re turn address on stack

// and branches to subrout ine B
. . . // arguments o f B popped from stack
r t s pc // pops an address from the stack

// and re tu rn s to that address

15„Mein Gehalt ist so etwa 7 bis 10 e pro Minute, wenn ich vorlese - also nutzt das!“

15

• code of called procedure B:
move r5 , r0 // pushing R5 ’ s o ld value onto s tack
move pc+2, r5 // a s s i gn i ng to R5 the re turn address in B
j s r r0 , csv // a f t e r c a l l i n g csv , and c a l l i n g csv

pc+2: . . . // assumption : a f t e r execut ing these fragment
// o f B ’ s code , the s tack has the same contents ,
// and the va lue s o f SP and R5 are the same
// as be f o r e execut ing t h i s fragment .

r t s pc // pops address o f cret from stack
// and re tu rn s to cret

• csv - C registers save routine: To save the machine registers, the compiler
inserts a call to csv, an assembly language routine that saves the registers
and jumps back to called routine B
csv : move r5 , r0 // by assumption R5 conta in s re turn address

// in B , and stack hast o ld value o f R5 ,
// re turn address in A and B ’ s arguments on i t

move sp , r5 // R5 s t o r e s va lue o f SP , i . e . address o f B ’ s frame
. . . // R4 , R3 , R2 pushed on stack in that order
j s r pc , (r0) // o ld value o f PC , i . e . , address o f \ verb" c r e t " ,

// pushed on stack and con t r o l branches to address
// s to r ed into , i . e . , r e turn address in B

• cret - C registers restore routine: When code for B is finished, compiler
inserts call to assembly language routine cret to restore the old values
of the machine’s registers and the stackpointer SP (i.e. R6) and to
return control to the original caller.
c r e t : move r5 , r2 // R2 conta in s address o f B ’ s frame now

move −(r2) , r4 // o ld va lue s o f R4 , R3 , R2

. . . // r e s t o r ed in that order !
move r5 , sp // SP po in t s to B ’ s frame again
move (sp)+ , r5 // o ld value o f R5 r e s t o r ed and

// a f t e rwards SP := SP + 2
r t s pc // pops re turn address in A ’ s code

// and jumps to that address

• Stack:

address of cret
old value of R2

old value of R3

old value of R4

old value of R5

return address in A ←− SP
arg1

. . .
argn

16

2.4 Summary

3 List and Queue Manipulation

3.1 Linked Lists Of Processes
List processing is fundamental for operating systems since one needs
lists of processes to be scheduled (ready for scheduling), processes waiting
on a semaphore, processes ordered by priority (time) in order to implement
time-sharing (sleep list).

Two types are needed here: FIFO queues are ordered by time of insertion,
priority queues are ordered by time to wake up (in view of time-sharing);
necessary operations:

• inserting an item at the tail of a list or within an ordered list

• removing an item at the lead of a list

• allocating a new list

Programming these operations is simple because only one process executes
these operations at a time. This is due to the fact that they occur only in
critical sections (programmed by forbidding interrupts16 in the fields of the
process status register). Elements are extracted from FIFO queue by removing
them from the head, hence they are inserted at its tail.

If the list is a priority queue, getfirst(head) removes the item with the
smallest key, and getlast(tail) removes the item with the biggest key. Hence
priority queue insertion starts at head of the priority queue.

Items to be stored in lists are process identifiers (there are NPROC
processes) with MININT ≤ process priority ≤ MAXINT . All lists are
doubly linked, i.e. each node points to its successor as well as predecessor, and
each node contains a key; each list has both a head and a tail, predecessor
of head and successor of tail point to empty list (= -1); head node contains
MININT as key, tailnode MAXINT .

Optimization is possible because a process appears on at most one list at any
time; queue-array has nodes for each process in its [0 . . . NPROC − 1]-part,
and head and tail nodes for every list needed in it [NPROC . . .NQENT]-
part.

16„. . . interrüpts . . . “

17

key next previous
0
1
2 14 33 4
3
4 25 2 32

. . .
NRPOC -1

NPROC
. . .
32 MININT 4 -1
33 MAXINT -1 2
. . .

Array17 queue is external, and an array18 of queue structures, as declared in
file q.h.

3.2 Implementation of the Q-Structure
3.2.1 In-Line Q Functions

3.2.2 FIFO Queue Manipulation

3.3 Priority Queue Manipulation

3.4 List Initialization

3.5 Summary
Linked lists are kept in a single data structure, the q array. Primitive operations
for manipulating the lists of processes can produce FIFO queues or priority
queues. All lists habe the same format: they are doubly-linked, each has both
a head and tail, and each node has an integer key field. Keys are used when
the liste is a priority queue: they are ignored if the list is a FIFO queue.19

17„Dies ist eine Vorlesung über Ziegenfortpflanzung, und jetzt geht’s darum, wie Ziegen
sich fortpflanzen!“

18„Kannst Du das beantworten?“ - „Ääääähm, . . . ich habe die Frage nicht ganz verstan-
den!“ - „Das ist natürlich das Einfachste!“

19„Wo ich gelehrt habe im California, da wird man gefired, wenn ein Drittel der Studenten
wegbleibt!“

18

4 Scheduling and Context Switching
Why is scheduling and context switching difficult? Because the CPU cannot
be stopped at all!

4.1 The Process Table
The proctab is an array of structures pentry, there is one entry for each
process in this table. Because only one process running at the time one of
these entries is out-of-date, since corresponding with the currently active
process. The other entries correspond to processes which are temporarily
halted.

Exactly what info must be saved in proctab? All values that will be destroyed
when another process runs; e.g. no copy of the stack because there a separate
stack areas for different processes. In addition to data that must be reloaded
when it resumes a process, the system also keeps information in the process
table that it uses to control processes and account for their resources.

Processes are referenced by their process id, which is the index of the saved
state information in proctab.

4.2 Process States
The system uses the pstate-field of the process table to help it keep track
of what the process is doing and the validity and semantics of operations
performed on it. In Xinu there are the following six states (and one to signal
that a slot in the process table is free):

Status Kapitel
PRCURR (4)
PRREADY (4)
PRRECV (7)
PRSLEEP (10)
PRSUSP (5)
PRWAIT (6)
PRFREE (4)

4.3 Selecting a Ready Process
A process is classified as PRREADY when it is eligible for CPU service, but
not currently running. The single process served by the CPU is classified as
PRCURR. Switching context involves selecting a process from those that are

19

ready or current, giving control to the selected process.

Often it remains eligible to use CPU, even when control is temporarily passed
to another process (e.g. as a result of round-robin scheduling). Then it’s
current process state changes to PRREADY and it is moved to ready list for
later CPU service.

How does the Rescheduler (resched) decide whether to move current process
to ready list? If current process is not eligible to use the CPU, the system
routines assign a desired next state to its pstate-field before calling resched.

Which processes call resched? The process which is executed unter Xinu
on this exact moment! The Processes that are calling resched are:

procedure page
sleep 129
wakeup 133
receive 97
send 96
wait 85

signal 86
sdelete 89
suspend 69
resume 67
kill 71

So resched() is a normal procedure, and calling it results in executing it
like a normal procedure. The code of context-switching procedure ctxsw
is machine dependent because machine registers should be saved by it:

• The PC must be changed last to give the CPU the opportunity to
continue executing the new process (and not earlier) once info about
old process stored into proctab and stack.

• On the 11/2 the rtt instruction pops both PS and PC from stack and
reloads them in one step, so after saving the registers associated with
the old process in the registers save area of that process.

The stack look like this:

20

return address
of return(OK) ←− SP

Address of g-word
save area with ←− SP + 2

old registers and PS
Address of g-word
save area with ←− SP + 4

new registers and PS
. . .

move r0 ,∗2 (sp) // save o ld R0 in o ld r e g i s t e r area
move 2(sp) , r0 // get address o f o ld r e g i s t e r area in R0

add $2 , r0 // increment to get p o s i t i o n where R1 w i l l be saved
move r1 , (r0)+ // save R1 to R5 in s u c c e s s i v e
move r2 , (r0)+ // l o c a t i o n s o f the o ld proce s s r e g i s t e r
move r3 , (r0)+ // save area .
move r4 , (r0)+ //
move r5 , (r0)+ //
move $2 , sp // move SP beyond the re turn address ,

// as i f a re turn had occurred
move sp , (r0)+ // save s tack po in t e r
move −(sp) , (r0)+ // save c a l l e r ’ s r e turn address as PC
mfps (r0) // save p ro c e s s o r s t a tu s beyond r e g i s t e r s
move 4(sp) , r0 // pick up address o f new r e g i s t e r s in R0

// ready to load r e g i s t e r s f o r the new
// proce s s and abandon the o ld s tack

move 2(r0) , r1 // load R1 to R5 and SP from
move 4(r0) , r2 // the saved area
move 6 . (r0) , r3 //
move 8 . (r0) , r4 // the p r e r i od . makes i t decimal
move 10 . (r0) , r5 //
move 12 . (r0) , sp // swi t ch ing s ta ck s
move 16 . (r0) ,−(sp) // push new proce s s PS on new proce s s s tack
move 14 . (r0) ,−(sp) // push new proce s s PC on new proce s s s tack
move (r0) , r0 // f i n a l l y , load R0 from new area
r t t // load PC , PS and r e s e t SP a l l at once

After return from hibernation20 stack pointer should point to stack segment
with parameters of ctxsw since these are popped in calling procedure’s
translation (argument of ctxsw must be popped from stack).

4.4 The Null Process
The scheduler assumes that at least one process is available on the ready
list queue, it does not bother to verify whether the ready lists is empty, so:
resched() can only switch context from one process to another, so at least
one process must always remain on ready queue. To ensure that a ready
process always exists Xinu creates an extra process, the null process, when
it initializes the system. It has pid zero and pprio zero; its code consists

20„Wer hat so ungefähr eine blasse Ahnung, wovon ich rede?“

21

of an infinite loop (see page 196). Because user processes all have priority
grater than zero, the scheduler switches to the null process only when no user
process is ready to run.

4.5 Making a Process Ready
Making a process eligible for CPU service occurs so often that a special
procedure has been designed to do so: ready(pid, resched). In principle
putting a process on the ready lists should result in a call to resched to make
sure that the process with the highest priority is running. However, sometimes
this results in a too heavy overhead in execution time when many processes
are put on the ready queue (exapmle: process wakeup in realtime interrupt
processing, see page 133). Then all these processes are put on the ready
list without rescheduling after each one, only after the last one resched())
is called once. This construction is made possible by providing ready(pid,
resched) with a boolean argument resched.

4.6 Summary

5 More Process Management

5.1 Process Suspension and Resumption
Transparentes Einfrieren und Entfrosten eines Prozesses: Wie beim Kon-
textwechsel zwischen CURRENT und READY: Retten aller potentiell wichtigen
Daten, auf Benutzerwunsch Systemaufruf (system call) und Einfrieren „bis
auf expliziten Widerruf“ (neuer Zustand SUSPEND)

Jeder Prozess hat jeweils genau einen der (in Xinu 6) möglichen Zustände.
Bisher (die fundamentalen für Timesharing/Multiprogramming): CURRENT
(laufend) und READY (lauffähig, aber gerade nicht dran); neu: SUSPENDED (d.h.
temporäres, benutzergesteuertes Gestopptsein, also nicht gleich READY), es
existiert aber keine SUSPENDED-Queue!

Der suspended-Status wird z.B. benutzt, um pages vom Datenträger zu la-
den, die in Benutzerprogrammen referenziert wurden und im Hauptspeicher
erwartet werden.

5.1.1 Implementation of Resume

Wie bei allen Systemaufrufen, werden am Anfang die Interrupts deaktiviert
(disable(ps)) und am Ende wieder aktiviert (enable(ps)). resume setzt

22

den Status eines Prozesses auf READY und setzt ihn entsprechend auf die
ready-list.

Resume calls resched, and hence changes the process table and the q-structure.
Reason for the need of turning interrupts off when accessing the central
data structures of Xinu: What happens when another process would be
simultaneously changing the process table? This situation is, in general, called
race condition. The final state of the process table is not clear!

simultaneously{x = 1 | x = 2 | x = 3} ⇒ x =?

To prevent such situations from happening, this uncertainty is prohibited by
disabling interrupts while accessing the process table.

How can resched() be called? By calling sleep/wakeup, receive/send, wait/si-
gnal, suspension/resume (see page 128). However this kind of call presupposes
that resched() is called in parallel to the current process. Interleaving the
instructions of this concurrent (parallel) processing in between the instructi-
ons of the current process implies that, e.g., the real-time clock procedure
has interrupted the current process. However, this is impossible when the
current process is deaf to interrupts. For then the real-time clock interrupt is
temporarily postponed.

Question: Does this necessarily imply that the process reacts to interrupts
again? No, the interrupts may have been turned off before calling resched()!

5.1.2 The Return Values SYSERR and OK

Es werden Fehlerbedingungen abgefragt und ggf. wird ein SYSERR ausgegeben.

5.2 System Calls
Systemaufrufe sind vom Benutzer aufrufbar, in der Regel sind sie mit beson-
deren Privilegien ausgestattet; siehe dazu auch Anhang 2.2. Aufgaben sind
zum einen, eine Schnittstelle zwischen Anwenderprogrammen und Systemkern
zu bieten, also die Dienste des Betriebssystems bereitzustellen, zum anderen,
das System zu schützen.

Grob gesagt: Systemaufrufe sind alles, was der Benutzer vom System verlangt.
Klassifizierung:

• Prozeßmanagement und Signale, Interprozesskommunikation

• Filemanagement, Verzeichnis- und Filesystemmanagement

23

• Schutzfunktionen

• Zeitmanagement oder allgemeines Informationsmanagement

• Ein- und Ausgabe (z.B. Öffnen, Schliessen, Terminalattribute, Geschwin-
digkeiten, . . .)

• (Speichermanagement)

There is only one process table in the system, shared by all its processes.
So how can a process be sure that no other process is trying to change the
process table at the same time?

1. It should not call resched(), because rescheduling switches control to
another process and this changes the process table

2. The system should not react to interrupts, since interrupt routines can
call resched() as well.

5.2.1 Implementation of Suspend

suspend löscht einen Prozess mit READY-Status von der ready-list bzw. stoppt
ggf. den aktuell ausgeführten Prozess.

5.2.2 Suspending the current Process

Ein Prozess kann sich selbst suspendieren mit suspend(getpid())).

5.3 Process Termination
Suspend freezes processes, but leaves them in the system so they can be
resumed later. Another system call, kill21, stops a process immediately and
removes it from the system completely. It checks the pid (so the null process
can’t be killed), decrements the number of processes that currently exists and
frees the stack used by the process. The further action taken by kill depend
on the process’ state (handle waiting semaphores, dequeue the process), finally
the process state is set to PRFREE.

21„Wie sagte man früher im Wilden Westen? Der Prozess ist vogelfrei!“

24

5.4 Kernel Declarations
In der Datei kernel.h werden zentrale, Betriebssystem-weite Systemkonstan-
ten (Beispiele: Abkürzungen für Register, Typen, Standardwerte, . . .) und
Routinen (Inline-Prozeduren, u.a. asm-Befehle) definiert. Dabei werden die
Inline-Funktionen nicht als normale Funktionen deklariert, um damit das
Erstellen und Löschen von Stackeinträgen etc. zu sparen, diese Lösung ist
effizienter.

5.5 Process Creation
Ein neuer Prozess wird mit dem Systemaufruf create erschaffen, es erfolgt
die Zuweisung aller benötigten Resourcen und Daten (entsprechend den
Parametern des Systemaufrufs). Es wird eine neue pid vergeben, es wird der
Eintrag in der Prozesstabelle angelegt, der Stackbereich wird reservier und
Variablen wie Priorität, Name, Anzahl der Argumente werden festgelegt. Der
neue Prozess kann nicht sofort CURRENT werden, sondern muß mit resume
gestartet werden.

Nicht alle Prozesse werden vom Benutzer einzeln getötet, Problem: wie bereitet
man den natrürlichen Tod eines Prozesses vor? Antwort: indem der Prozeß
beim letzten return nicht „irgendwohin“ zurückkehrt, sondern anständig
weggeräumt wird. Mit der vorgestellten Lösung werden die C-Konventionen
beachtet, es wird ein Prozeduraufruf simuliert (Pseudocall), dessen initialer
Stack bereits den Konventionen gehorchen muß und entsprechend gefälschte
Rücksprungadresse (zu userret())) und Argumente enthält.

Der Code von create ist in drei Phasen gegliedert: Stackbereich reklamieren,
Daten u.a. in die Prozesstabelle eintragen und pid zurückgeben.

6 Process Coordination
Prozeßkoordinierung ist notwendig um Aktionen von Prozessen zu synchroni-
sieren und um den Zugriff auf gemeinsame Ressourcen zu regeln, beispielsweise
beim Producer-Consumer-Problem oder bei Mutual Exclusion. Die einfachste
Möglichkeit zur Prozeßkoordinierung bieten Semaphore.

25

6.1 Low-Level Coordination Techniques

6.2 Implementation of High-Level Coordination Primi-
tives

Jede Semaphore s ist im Prinzip ein Integer-Wert. Der Systemaufruf wait(s)
reduziert s um 1, signal(s) erhöht s um 1. Wird s beim Aufruf von wait(s)
negativ, wird der Prozeß angehalten; beim Aufruf von signal(s) wird ein
Prozeß, der auf s wartet, aufgeweckt. Die Xinu-Implementierung vermeidet
busy waiting durch Einführung eines neuen Prozeßzustandes PRWAIT. Zu jeder
Semaphore gehört eine eigene Warteschlange.

A nonnegative semaphore count means that the queue is empty, a se-
maphore count of negative n means that the queue contains n waiting
processes.

6.3 Semaphore Creation and Deletion

7 Message Passing
Interprozesskommunikation ist ein wichtiges Mittel in Betriebssystemen, z.B.
shell-pipeline in Unix (IPC zwischen Benutzerprozessen). Verschiedene Me-
chanismen zur Implementierung sind beispielsweise Semaphore zur Koordina-
tion/Synchronisation; Monitore; gemeinsame Variablen oder message passing.
Anders als Synchronisation durch Semaphore kann message passing unsyn-
chronisiert sein; es wird implementiert durch die Systemaufrufe send(...)
und receive(...).

Senden und Empfangen können blockierend (beide blockierend: rendez-vouz)
oder nicht-blockierend sein; die Kapazität der Verbindung (Pufferlänge) spielt
eine Rolle (was passiert, wenn der Puffer voll ist?); sollen Nachrichten fester
oder variabler Länge gesendet sein; soll es möglich sein, mehrere Prozesse als
Empfänger anzugeben?

In Xinuexistieren zwei Formen des Nachrichtenaustauschs: 1. direkt von
Prozeß zu Prozeß, 2. über Rendevous-Punkte. Dabei sind send und recvclr
asynchron, während receive synchron arbeitet. In Xinuexistiert nur ein
Empfangspuffer der Länge eins, d.h. nur die erste Nachricht wird übertragen.
Zudem wird ein neuer Prozeßzustand PRRECV eingeführt.
Das Senden signalisiert einen Fehler, falls Prozeß-ID nicht paßt oder der
Empfangspuffer bereits voll ist. Das Asynchrone Empfangen ist ähnlich dem
synchronen Empfangen, falls die Nachricht vorhanden ist: Rückgabe der

26

Nachricht, sonst OK. Beim synchronen Empfangen wird der Prozess ggf. auf
den Prozeßzustand PRRECV gesetzt und wartet zunächst, bis er wieder von
send aufgeweckt wird.

8 Memory Management

9 Interrupt Processing

9.1 Dispatching Interrupts
Two-Level-strategy to handle interrupts:

1. interrupts branch to low-level interrupts dispatch routine written
in assembly language, they

• save and restore R0 and R1

• identify the interrupting device

• handle return from interrupt

• and call the second level:

2. high-level interrupt routines (for r/t, i/o passing, disc processing),
written in C

In Xinu there are three interrupt dispatchers22: clock interrupts, input- and
output-interrupts.

How is the interrupting device identified? At the interrupt vector address
the PC (address of interrupt dispatch routine) and the PS (0341 for device
1, 034i for device i (i = 0, . . . , 15) is stored, the PS is used to identify the
device.

9.2 Input and Output Interrupt Dispatchers
The interrupt dispatchers assume that the PC and the PS are on top of
the stack upon entry. Low order 4 bits of the current PS contain the device
descriptor. Interrupts are disabled.

22Man sollte immer auch den Text lesen, der Text ist immer besser als mein Vortrag -
das ist der Nachteil, wenn man ein gutes Buch liest.

27

_outint :
mfps −(sp) // get new PS to i d e n t i f y i n t e r r up t i n g dev i ce
mov r0 ,−(sp) // save R0 (because csv does not)
mov $_intmap+4, r0 // po int R0 to output in intmap
br i o i n t // go to common part o f code

_inint :
mfps −(sp) // get new PS to i d e n t i f y i n t e r r up t i n g dev i ce
mov r0 ,−(sp) // save R0 (because csv does not)
mov $_intmap , r0 // po int R0 to output in intmap

i o i n t :
mov r1 ,−(sp) // save R1 (csv does not)
mov 4(sp) , r1 // get saved PS in R1

b i c $177760 , r1 // t r a n s l a t e 034 i to 000 i
ash $3 , r1 // s h i f t l e f t 3 t imes to get (i ∗8) to c o r r e c t l y

// jump in the i n t e r r up t tab le , which uses 8 bytes
// per i n t e r r up t

add r1 , r0 // s h i f t po in t e r in i n t e r r up t t ab l e i ∗8 bytes
mov 2(r0) ,−(sp) // push i code or ocode from intmap as argument
j s r pc , ∗ (r0) // c a l l high−l e v e l i n t e r r up t rou t ine

// here : j u s t returned from high−l e v e l i n t e r r up t rou t ine
mov 2(sp) , r1 // r e s t o r e R1 and R0 from stack
mov 4(sp) , r0 //
add $8 , sp // d e l e t e s tack frame : arg , saved R0 , R0 and PS
r t t // re turn from in t e r r up t

9.3 The Rules for Interrupt Processing
Interrupt routines examine and modify global data structures, so interference
from other processes must be prevented. This is essentially done in two
ways:

• disabling interrupts, with interrupts still disabled after interrupt routine
returns; so only after ioint returns interrupts enabled again.

• disabling interrupts, but: hight-level interrupt routines may enable
interrupts by indirectly calling resched, in case the CPU switches to
a process with interrupts enabled!

Interrupt routines should leave global data in a valid state before calling
resched(). No procedure enables interrupts unless it previously disabled
them (when calling resched()).

28

10 Real-Time Clock Management

10.1 The Real-Time Clock Mechanism
Three kinds of clocks associated with a computer23:

1. central system clock: controlling the rate the CPU executes instructions
(belongs to MHz or FSB or so)

2. real-time clock: pulsing regularly an integral number of times each
second, signalling the CPU each time a pulse occurs by posting an
interrupt

3. time-of-day clock: a chronometer like a watch, the CPU controls this
clock

The real-time clock does not contain a counter (con to the time-of-day clock),
does not accumulate interrupts (left to the system) and controls the CPU.
Responsibility for counting interrupts falls upon the system:

If the CPU takes too long to service a real-time clock interrupts, of if it
operates with interrupts disabled for more than one clock cycle, it will
miss the interrupt.

So systems must be designed to service clock interrupts quickly.

10.2 Optimization of Clock Interrupt Processing
Effective clock ratio has to be adjusted to match the system - how is this
done in Xinu? The clock interrupt handler/dispatcher clkint simulates a
slower-rate clock by dividing the clock rate: The LSI 11/2 real-time clock
generates 60 pulses per second and clkint ignores 5 clock interrupts in a row
by serving them not at all (very quickly!) before processing the 6th one.
This reduces the effective clock rate, called the tick rate.

10.3 The use of the real-time clock
Operating Systems use real-time clocks to compute the time-slices allotted for
the execution of each process by scheduling a pre-emption event. This event
is used to prevent processes from running forever. It is set in resched() by
preempt = QUANTUM; (see page 58) The clock interrupt dispatcher effcint

23zu Hause angucken: Befehle mov ri,-(sp) und mov (sp)+,ri für i = 0,1 in clkint.s,
möglicherweise wichtig für Klausur!

29

decrements preempt on each tick, calling resched() when preempt = 0.

The Operating System also provides processes with timed delays: The system
maintains a list of processes, ordered by the time they should be awakened.
When the real-time clock interrupts, it examines this list and wakes up
processes for wich the delay has expired. A preemption

10.4 Delta List Processing
Because it cannot afford to search through long lists of sleeping processes to
find those that should awaken on each clock tick, the system keeps sleeping
processes in a data structure called a delta list :

Processes on clockq are ordered by the time at which they will awaken:
each key tells the number of clock ticks that the process must delay
beyond the preceding one on the list

Example waiting times: P1 = 5, P2 = 27, P3 = 28, P4 = 28, P5 = 35. The
Q-Structure used to save this data:

head −→ P1 : 5 −→ P2 : 22 −→ P3 : 1 −→ P4 : 0 −→ P5 : 7 −→ tail

10.5 Putting a Process to Sleep
System call sleep10(n) delays the calling (current) process for n tenth-of-a-
second, by moving the current process to the delta list clockq. This requires
introducing a new process state for that moved process: SLEEPING (see figure
10.1).

10.6 Delays measured in Seconds
The size of integer (16 bits) limits the delay time of sleep10(n) to approx. 55
minutes. System call sleep(n), which puts a process to sleep for n seconds,
provides a way to delay up to 9 hours.

10.7 Awaking Sleeping Processes
that clkint decrements the count of the first key on clockq at each time,
until this key equals 0 at which time the hight-level interrupt procedure
wake-up() is called, to put processes with key = 0 on to ready list.

30

10.8 Deferred Clock Processing
The deferred mode allows the system to accumulate clock-ticks in var
clkdiff without initiating events. I.e., it postpones the reaction upon
realtime-clock interrupts. The clock handler can schedule events that should
have occurred as soon as it leaves deferred mode and returns to original mode.

10.8.1 Procedures for Changing to and from Deferred Mode

A process can place the clock in deferred mode by calling STOPCLK and
return the clock to real-time mode by calling STRTCLK. STOPCLK counts
deferral requests by incrementing defclk; STRTCLK counts restart requests
by decrementing defclk. As long as defclk remains positive, the interrupts
handler counts clock ticks in clkdiff without processing them.

10.9 Clock Interrupt Processing

10.10 Clock Initialization
To determine if the system has a real-time clock, setclkr(); runs through
a loop 30.000 times. If there’s a real-time clock, it should at least once
interrupts this loop24. So the interrupt handler is temporarily overwritten
with a procedure which enables the clock.25

10.11 Summary

11 Device independent Input and Output
Operating Systems control the I/O-devices for three reasons:

1. The hardware interface to such devices is crude, requiring complex
software packets for their control, called device drivers.

2. Device drivers are shared resources, which need to be protected and
allocated in a fair and safe way.

3. A uniform, flexible interface should be provided, a high-level inter-
face, allowing users to write programs without knowing the machine
configuration.

24„Das ist das Schöne an System Programming: Die richtige Lösung ist immer kurz.“
25„Also ein bißchen studieren zu Hause und Kai Baukus lieb angucken. Er guckt schon

dunkel, er kann’s auch nicht lesen.“

31

Focus of this chapter: The selection of a set of machine-independent high-
level I/O primitives and the data structure required to implement these
primitives to specific devices.

How are these primitives selected? By generating a list of desirable
properties, deriving a set of high-level primitives, and giving their meaning
with respect to certain abstract (classes of) devices, for example terminals,
discs etc. The last step is to build software mapping the abstract devices to
particular instances of that device.

11.1 Properties of the input and output interface
Question: Should processes block while performing I/O operations (synchro-
nous operations) or should they continue executing and be notified when the
operation completes (asynchronous operations)? Asynchronous operations are
useful for controlling overlap, i.e. more parallelism of comp and I/O operations.
Synchronous operations delay input operations until data arrives and delays
output operations until data has been consumed. Their advantage is that
users can depend on data immediately after an input operations and change
data immediately after an output operation.

Also a question: which format does the data have? Single-byte transfer (tele-
type terminals, e.g. console) or block mode (a block of many bytes like on a
disk)?

11.2 abstract Operations
• getc and putc deal with single-character transfer (read or display one

character)

• read and write deal with transfer to/from contiguous blocks of memory

• control allows control of the device (driver), e.g. whether the system
echoes each character as it is typed on the keyboard

• seek applies only to randomly accessible memory and then searches for
a particular position

• open and close inform device (driver) that data transfer will begin or
has ended (applies to disk and file access)

• init initializes the device and device driver at system’s startup

32

11.3 Binding abstract Operations to Real Devices
The system maps these high-level I/O operations to specific device drivers: it
hides the details of the hardware and the device drivers and it makes the
programs independent of the particular hardware configuration.

The high-level calls of these operations constitute the environment which
the system presents to running programs - i.e. the programs only see the
peripheral devices through these abstract calls.

The system also maps abstract names to real devices.26

Coded into the system is a description of each abstract device, e.g. the
device driver routines which it uses, the address of the real device to which it
corresponds. When a new device is added to the system, or, e.g., the device
addresses are modified, the system must be altered and recompiled.

11.4 Binding I/O calls to Device Drivers at Run-Time
Rotines like read in the compiled code should map abstract device descriptors,
s.a. console, to device driver routines and real device addresses. In Xinu,
each abstract device is assigned an integer device descriptor (0, . . . , 8) at
system configuration. E.g., console has the same device descriptor in all
Xinu systems.

In the device switch table, each entry corresponds to a single device,
containing:

• dvnum: the corresponding entry into the interrupt dispatch table intmap

• address of the device driver routines for that device (dvgetc, dvputc,
dvread, dvwrite, dvcontrl, dvseek, dvinit)

• device address and other info, since more than one device can use the
same device driver

Device switch table also contains27:

• hardware device addresses (dvcsr)

• interrupt vector addresses (dvivec, dvovec)
26Zur seitenlangen Liste in conf.h: „Ich werde keinem den Kopf abhacken, wenn er diese

Liste nicht kann in der Prüfung!“
27Zu einem, der gesappelt hat: „Dann geh mal zu einem anderen Professor, so Kluge zum

Beispiel, da bekommst Du gleich ’ne Fünf!“

33

• the interrupt routines for input (dviint) and output (dvioblk)

• buffer pointer dvioblk

• an integer dvminor distinguishing among multiple copies of a device28

11.5 Implementation of high-level I/O-operations
There is a procedure for each of the abstract operations getc, putc, read,
and so on. They call low-level device drivers indirectly through the device
switch table. For example, the C code in file read.c implements the read
operation:
read (int descrp , char ∗buf f , int count) {

. . .
devptr = &devtab [descrp] ;
return ((∗ devptr−>dvread) (devptr , buf f , count)) ;

}

11.6 Opening and Closing Devices
Some disk devices require the programs to start them before performikng a
transfer operations, and to stop them when the transfer completes.

11.7 Null and Error Entries in Device Table
Not all combinations of operations and device descriptors are meaningful:

• ionull() signifies an unneccessary byte (e.g., open a console), returns
OK

• ioerr() signifies an illegal operation (e.g., seek on a console), returns
SYSERR

11.8 Initialization of the I/O System
The device table devtab is generated when the system in configured, so it is
completely filled in by the time the system is compiled. Generating the file
conf.h is discussed in chapter 20.

28„Ich habe am Wochenende „Superstar“ geguckt. Ich habe gemerkt, daß ich eine laute
Stimme habe - schade, daß ich, als ich jung war, nicht mitgemacht habe. Also: Ich wäre ein
guter Sänger gewesen.“

34

11.9 Interrupt vector Initialization
Interrupt vectors and the interrupt dispatch table29 intmap are initialized at
runtime, using the information in devtab. The system calls init(k) for each
device k at startup, before it starts executing the user’s program (done in
chapter (13)).

The device table forms the general framework for linking interrupts,
devices and device driver routines.

12 An Example Device Driver
This chapter discusses the device driver routines for a standard computer
terminal with a keyboard, called teletype or tty.

12.1 The device type tty

To minimize the interference between I/O devices and running processes, the
driver uses interrupts-driven processing to

• transmit characters when serial line unit (SLU) is idle

• read characters when these are received by the unit

• handle details like receiver errors

The tty driver operates using parameters, so it can be used for a variety of
terminals in a variety of system configurations. E.g., several parameters control
the echo of characters typed on the keyboard onto the screen (full-duplex
mode: do not display characters as the user types them; half-duplex mode:
directly echo keystrokes). There are other parameters concerning unprintable
chars as printable combinations (to move to a new line, terminal must receive
both newline and return).

12.2 Upper and Lower Halves of the Device Driver
A device driver is a set of procedures controlling a peripheral hardware device.
It’s routines are partitioned into

• upper-half device driver : called from user programs
29„Pro Minute für Studenten: 10 EUR. Mein Gehalt staffelt sich nach den Minuten, die

ich vorlese. Ein bißchen dumm, aber so ist das deutsche Gesetz.“

35

• lower-half device driver : handling device interrupts

These two halves communicated via a shared data structure, the device control
block.

Upper-half routines enqueue requests for data transfer or device control;
they do not interact with devices directly. Lower-half routines transfer
data from buffers or control devices; they do not interact with user
programs directly.

12.3 Synchronization of the Upper and Lower Halves
Output operations issued by the calling user process are deposited as to be
written characters in the output buffer, and return to the caller.

Whenever the SLU receiver interrupts after it has received a character, the
interrupt dispatcher calls the lower-half input interrupt routine. The lower-
level interrupt input handler reads the waiting character and deposits it in
the circular buffer. A process waiting for input from the (empty) circular
buffer is started as soon as the next character arrives.30

12.4 Control Block and Buffer Declarations
Both lower-half of the device driver and the ... use the minor device number
as an index in the array of tty-structures.

12.5 Upper-Half tty Input Routines

12.6 Upper-Half tty Output Routines

12.7 Lower-Half tty Driver Routines
12.7.1 Watermarks and Delayed Signals

12.7.2 Lower-Half Input Processing

Input interrupt processing is more complex because it cares for character
echo, line editing, processing of input errors and buffer overflow. It operates
in one of the following three modes:

• raw: accumulates chars in input buffer without further processing
30„. . . Signatur „Rembrandt Kai Baukus“ . . . “

36

• cooked: does character echo, honors suspend or restart output, accumu-
lates full lines before passing them on to upper-half routines, honores
input editing by erasing previous chars or killing entire lines

• cbreak: honors control chars but does no line editing

12.7.3 cooked Mode and cbreak-Mode Processing

12.8 tty Control Block Initialization

12.9 Device Driver Control

12.10 Summary

13 System Initialization
Many microcomputers require no more than what’s been discussed in chapters
1 to 12.
How does CPU know when a character is received in RBUF-field of CSR, or
when a character has been sent after having been placed in XBUF-field of CSR?
It uses one of two techniques: Polled I/O or interrupts-driven I/O. Polling is
used for initialization or debugging because based on busy-waiting: It requires
CPU to check device repeatedly until it finds a character is waiting or has
been sent.

• RCSR: Bit 7 whether character received along Serial Line Unit, Bit 6
Serial Line Unit will post interrupt when character received in RBUF

• XCSR: Bit 7 when character has been transmitted, Bit 6 Serial Line
Unit will post interrupt when character has been sent, Bit 0 transmitter
is forced in BREAK condition; must be set to 0 to clear break condition

13.1 Starting from Scratch
A crash occurs when hardware executes an ivali operation, caused because
code or data in the OS has been destroyed. A crash means the contents of
memory have been corrupted or lost!

How can a machine, devoid of valid programs, spring into action and
begin executing? It cannot!

Somehow a program must be deposited in memory before the machine can
start. On the oldest cptrs this happend by hand, using switches. Later

37

standard keyboards built to that purpose, i.e. special terminals, now micro-
and mini-computers are used to load the initial program from disk or tape
storage attached to the system.

Once the initial program has been loaded, the CPU can executed the startup
program which reads a larger program (usually from a specific location on a
specific disk). Then the CPU branches to a larger program which reads the
entire OS into memory and braches to the later’s beginning. This process is
called rebooting the system.

The main goal of the chapter is to explain the steps necessary to transform
the single, sequential program into a operating system.

13.2 Booting Xinu

Xinu is downloaded from another computer in the following steps:

1. Host computer generates a break condition to halt the 11/2 processor.

2. 11/2 responds in Octal Debugging Technique (ODT) mode; it sends
a prompt and recognizes commands to display and change memory
locations and registers.

3. Hosts loads initial program in 11/2 memory starting at location 0, and
starts 11/2 executing it.

4. initial boot program reads characters, using polled I/O, and deposits
them in memory starting at highest location. Host sends second boot
program to 11/2.

5. When finished, host sends a break, forcing 11/2 into ODT mode.

6. When ODT responds, hosts starts executing on 11/2 of second boot
program.

7. Host and second boot program communicate, with the host sending
„packtes“ of bytes (one-at-a-time), and boot programm acknowledging
receipt or requesting transmission

8. Host (either) tells second bootstrap to branch to the start of Xinu (or
to halt and await ODT commands)

9. Host directs second bootstrap to branch to Xinu, and CPU begins
executing start program.31

31Zu einem, der zu spät kommt: „Noch so ein Kraftprotz, der alles schon kennt“

38

13.3 System Startup
The startup program32

13.4 Finding the size of Memory
At label start, Xinu is creating a valid runtime environment for C by
setting Stack Pointer to the highest available Memory Address. This is done
by try-and-error (with interrupts).33

13.5 Initializing System Data Structures

13.6 Transforming the Program into a Process

13.7 The Map of Low Core

13.8 Summary

17 A Disk Driver
At the level of device driver routines, a disk is viewed as a randomly accessible
array of blocks (here, of size 512 bytes). The interaction between driver
software and the disk device itself is more complicated than for a serial line
unit. Therefore, an extra controller (disk-controller) is needed with its own
format of controller request records (see page 34, figure 2.11).

A disk is a random access device. Therefore, a disk must position the disk
arm as well as transfer data. Disk hardware uses direct-memory-access mode
(DMA), allowing for the direct transfer to/from memory blocks without help
from the CPU. So it does not interrupt the CPU for the transfer of every
single character. Hence CPU can continue operation while block transfer takes
place.
A disk consists of

• a disk drive (i.e., platters (spindle) which rotates at a high speed, and
a physical arm)

• an electronic controller (contains microprocessor(s), positions disk arm,
controls transfer of data, can operate multiple disk drives (but not able
to transfer data to/from one diskplatter simultaneously))

32„Was ist das für eine Zahl? Das ist keine Macht von Zwo!“
33Machst Du auch so einen Kurs, wo man lernt, wie man Männern in die Eier tritt? Das

muß man nämlich lernen!

39

• a host interface (connects controller to system bus, passes requests for
an I/O operation from processor to controller)

Disk devices are slow and awkward, compared with main memory operating
at speeds measured in nanoseconds. Disk host interface starts at address
0177460 beyond „real“ memory. It has six word format, incl. four essentially
used words:

Name Contents
CCSR Completion status Register
CSR Control & Status Register
DAR DMA Address Register
CAR Control Request Address Register
XDAR Extension for DAR (not used)
XCAR Extension for CAR (not used)

The Control and Status Register (CSR) contains bits for: P (Parity error,
bit 13), D (Operation completed, bit 7), I (Interface will interrupt when
operation completed, bit 6), G („go“, bit 0) and other ones.

17.14 Summary
1. Lower-Level disk driver implements four operations. Upper-half routines

merely enqueue requests for service. Whenever an operation (data
transfer) completes, lower-half routines takes next pending request from
queue, starts up hardware performing that operation, and wake up
process waiting for previous operation to end.

2. Driver reduces time to honor requests be reordering them to minimize
arm movement.

3. Because copying data for each transfer takes to much CPU time, the
driver accepts output requests, and returns asynchronously to caller
- without having copied the data in the output butter into the system
buffers - a dangerous strategy!

17.1 Operations supplied by the Disk Driver
At the device driver level, a disk is nothing more than a large array of data
blocks that can be accessed. Randomly using three basic operations: Select a
block (seek), copy the contents of the selected block from disk to memory

40

(read) and copy the contents of memory to the selected block on disk (write).

Format of instructions: read(DISKDEV, buff, blocknr) means „read disk
block with nr. blocknr into memory starting at address buff“. So, why is
operation seek needed? To optimalize disk access!

17.2 Controller Request and Interface Register Des-
criptors

The Xebec Disk Controller Layout is described by structure xbdcb on page
284 and 285, corresponding to figure 2.11. Notice the many possible operations
listed on page 285! For us, only XOREAD, XOWRITE and XOSEEK are interesting.
The disk controller host interface on page 286 parallels figure 2.12. Notice that
the bits in figure 2.13 correspond to operations DTGO (set bit nr. 0), DTRESET
(bit 1), DTINTR (bit 6), DTDONE (bit 7) and DTERROR (bit 15).

17.3 The List of pending Disk Requests
For disks, the requeired infor for transfer between upper- and lower-level rou-
tines resides in control blocks. Disk driver control blocks: dstab[], consisting
of structures dsblk, containing:

• dvioblk: should contain address or control block

• dcsr: should contain address of host interface

• dreqlst: DRNULL

• dibsem: semaphore dealing with access to the index block list in file
system

• dflsem: semaphore dealing with access to the free list of data blocks in
file system

• ddirsem: semaphore dealing for directory access in the file system

• dnfiles: number of open files, initially 0

• ddir: address for incore memory for the data directory: getbuf(dskdbp)
(disk data block buffer pool)

41

17.4 Enqueuing Disk Requests
The disk driver maintains the following invariant:

The first request on the pending request list is always the one the hard-
ware is performing, if the list is empty, the hardware is idle.

The lower-half records info about errors occurred, the upper-half extracts
that info and passes it to the caller.

The disk driver processes I/O requests in fht order in which they occur
on the request list. When one completes, it is removed from the list and
the next one is started. When procedure dskenq adds a request for block
B to the existing list of requests, it schedules it to be performed between
requests i and i + 1, if the disk arm will pass over block B on its
way from i to i + 1.

17.5 Optimizing the Request Queue
In case of a read operation to be enqueued for which there is a write for the
same block in the list of pending requests, the read operation. . .

17.6 Starting a Disk Operation
Procedure dskstrt on page 294 starts a disk operation by building a controller
request structure in the ddcb field of the disk control block, feeding that
request to the controller through the interface.

17.7 The upper-half read Routine

17.8 Driver Initialization
Procedure dsinit fills in the disk control block, fills in the corresponding
interrupts vectors and the corresponding entries into the interrupt dispatch
table by calling iosetvec, sets up a read command for the desk directory
to be read. Because the system executes the initialization routine before
interrupts are enabled, disk initialization runs in polled mode.

42

17.9 The upper-half output Routine

17.10 The upper-half output Routine

17.11 The upper-half seek Routine

17.12 The lower-half of the Disk Driver

17.13 Flushing Pending Requests

43

	Introduction: Tanenbaum's „Modern Operating Systems “
	Two views of an Operating System
	History of Operating Systems
	Peterson's Mutual Exclusion Algorithm

	The Xinu-Approach
	Operating Systems
	Our Approach
	What an Operating System is not
	An Operating System viewed from the Outside
	The Xinu Small Machine Environment
	Xinu Services
	Concurrent Processing
	The Distinction between Programs and Processes
	Process Exit
	Shared Memory
	Synchronization
	Mutual Exclusion

	An Operating System viewed from the Inside
	Summary

	Overview of the Machine and its Run-Time Environment
	The Machine
	Physical Organization of the LSI 11/2
	Logical Organization of the LSI 11/2
	Registers in the LSI 11/2
	Address space
	Processor Status Word
	Vectored Interrupts
	Exceptional Conditions
	Asynchronous Communication
	LSI 11 Asynchronous Serial Line Hardware
	Addressing a Serial Line Unit
	Polled vs. Interrupt-Driven I/O

	Disk Storage Organization
	The C-Run-Time Environment
	Conventions for translating procedures in the C-Compiler

	Summary

	List and Queue Manipulation
	Linked Lists Of Processes
	Implementation of the Q-Structure
	In-Line Q Functions
	FIFO Queue Manipulation

	Priority Queue Manipulation
	List Initialization
	Summary

	Scheduling and Context Switching
	The Process Table
	Process States
	Selecting a Ready Process
	The Null Process
	Making a Process Ready
	Summary

	More Process Management
	Process Suspension and Resumption
	Implementation of Resume
	The Return Values SYSERR and OK

	System Calls
	Implementation of Suspend
	Suspending the current Process

	Process Termination
	Kernel Declarations
	Process Creation

	Process Coordination
	Low-Level Coordination Techniques
	Implementation of High-Level Coordination Primitives
	Semaphore Creation and Deletion

	Message Passing
	Memory Management
	Interrupt Processing
	Dispatching Interrupts
	Input and Output Interrupt Dispatchers
	The Rules for Interrupt Processing

	Real-Time Clock Management
	The Real-Time Clock Mechanism
	Optimization of Clock Interrupt Processing
	The use of the real-time clock
	Delta List Processing
	Putting a Process to Sleep
	Delays measured in Seconds
	Awaking Sleeping Processes
	Deferred Clock Processing
	Procedures for Changing to and from Deferred Mode

	Clock Interrupt Processing
	Clock Initialization
	Summary

	Device independent Input and Output
	Properties of the input and output interface
	abstract Operations
	Binding abstract Operations to Real Devices
	Binding I/O calls to Device Drivers at Run-Time
	Implementation of high-level I/O-operations
	Opening and Closing Devices
	Null and Error Entries in Device Table
	Initialization of the I/O System
	Interrupt vector Initialization

	An Example Device Driver
	The device type tty
	Upper and Lower Halves of the Device Driver
	Synchronization of the Upper and Lower Halves
	Control Block and Buffer Declarations
	Upper-Half tty Input Routines
	Upper-Half tty Output Routines
	Lower-Half tty Driver Routines
	Watermarks and Delayed Signals
	Lower-Half Input Processing
	cooked Mode and cbreak-Mode Processing

	tty Control Block Initialization
	Device Driver Control
	Summary

	System Initialization
	Starting from Scratch
	Booting Xinu
	System Startup
	Finding the size of Memory
	Initializing System Data Structures
	Transforming the Program into a Process
	The Map of Low Core
	Summary

	A Disk Driver
	Summary
	Operations supplied by the Disk Driver
	Controller Request and Interface Register Descriptors
	The List of pending Disk Requests
	Enqueuing Disk Requests
	Optimizing the Request Queue
	Starting a Disk Operation
	The upper-half read Routine
	Driver Initialization
	The upper-half output Routine
	The upper-half output Routine
	The upper-half seek Routine
	The lower-half of the Disk Driver
	Flushing Pending Requests

